TRAITEMENT MECANO-BIOLOGIQUE (TMB)

2014 Mars

Référent : THAUVIN Philippe – Service Prévention et Gestion des Déchets
Direction Consommation Durable et Déchets – ADEME Angers

Résumé

Le traitement mécano-biologique (TMB) s’applique aux ordures ménagères résiduelles (OMR). Il consiste en l’imbrication étroite d’opérations mécaniques (dilacérations et tris) et d’étapes biologiques (compostage, méthanisation).

Les 5 objectifs possibles pour un TMB sont :
- Sur la fraction à haut PCI (pouvoir calorifique inférieur) du déchet :
 (1) Produire de l’énergie sous forme de CSR (combustible solide de récupération)
- Sur la fraction fermentescible du déchet :
 (2) Produire de l’énergie sous forme de biogaz
 (3) Fabriquer du compost
 (4) Réduire et stabiliser les déchets avant de les mettre en décharge
- Sur l’ensemble du déchet :
 (5) Recycler des matériaux (métaux, plastiques, papiers-cartons)

Le TMB est en fort développement en France. Il ne peut pas fonctionner sans décharge (éventuellement sans incinérateur), pour pouvoir évacuer les déchets qu’il ne peut pas traiter (10 % du gisement de déchets) ou les refus qu’il génère (souvent 40 à 60 % du gisement).

Avec les règles actuelles, qui devraient être renforcées, de trop nombreux TMB ne parviennent pas déjà à remplir leurs objectifs en termes de qualité et de rendement en compost. Aussi, l’ADEME appelle-t-elle les collectivités à la prudence.
Sommaire
Résumé ... 1
1. L’essentiel .. 4
 1.1. Définition .. 4
 1.2. Les cinq objectifs du TMB 4
 1.3. Un développement récent 5
 1.4. L’avis de l’ADEME (8 mars 2012) 6
 1.5. Pour aller plus loin : ... 6
2. Description des procédés .. 6
 2.1. Un prérequis : des collectes sélectives 7
 2.2. La production de compost sur un site de TMB 7
 2.2.1. Points forts ... 7
 2.2.2. Points faibles .. 7
 2.2.3. L’avis de l’ADEME ... 8
 2.3. La méthanisation sur un site de TMB 8
 2.3.1. Humidification et homogénéisation 8
 2.3.2. Caractéristiques du biogaz de TMB 8
 2.3.3. Points forts ... 9
 2.3.4. Points faibles .. 9
 2.3.5. L’avis de l’ADEME ... 9
 2.3.6. Pour aller plus loin : 9
 2.4. La stabilisation avant mise en décharge 9
 2.4.1. L’avis de l’ADEME ... 10
 2.4.2. Pour aller plus loin : 10
3. Cadre réglementaire .. 10
 3.1. En Europe .. 10
 3.2. En France ... 11
 3.2.1. Réglementation sur les déchets organiques 11
 3.2.2. Réglementation sur les installations de compostage et de méthanisation 11
 3.2.3. Réglementation sur la mise en marché de produits 11
4. Quels sont les impacts ... 11
 4.1. Au niveau des plates-formes 11
FICHE TECHNIQUE

4.1.1. Risques de production d’un compost non conforme .. 11
4.1.2. Les odeurs .. 12
4.2. Au champ .. 12
5. Quels sont les coûts .. 12
5.1. Une pertinence économique délicate à trouver .. 12
5.2. Des coûts différents selon les objectifs du TMB ... 13
5.3. Pour aller plus loin : .. 13
6. Des exemples .. 13
6.1. L’usine de Launay Lantic ... 13
6.1.1. Les tubes de fermentation ... 14
6.1.2. La tour d’affinage ... 14
6.1.3. Le compostage .. 14
6.1.4. La commercialisation ... 14
6.1.5. Pour aller plus loin : ... 14
7. Questions réponses ... 14
7.1. Sur la technique ... 14
7.2. Sur la réglementation .. 15
7.3. Sur les coûts ... 15
8. Perspectives ... 15
8.1. Evolutions réglementaires ... 15
8.2. L’avis de l’ADEME ... 15
8.3. Nécessité d’un retour d’expériences ... 16
Lexique ... 16
1. L’essentiel

1.1. Définition

Le traitement mécano-biologique (TMB) s’applique aux ordures ménagères résiduelles (OMR). Il consiste en l’imbrication étroite de plusieurs opérations :
- Des opérations mécaniques :
 - De dilacération afin de fragmenter les composants des déchets pour en faciliter le tri ou en accélérer la fermentation ;
 - De tris (granulométriques, magnétiques, densimétriques, aérauliques, optiques, hydrauliques…) pour constituer différents flux plus concentrés en certains composants à recycler (métaux, plastiques, verre…), à conduire en compostage ou méthanisation, à incinérer ou à éliminer ;
- Des opérations biologiques telles que le compostage ou la méthanisation qui transforment la fraction fermentescible isolée en produits valorisables (compost, biogaz) ou en déchets « stabilisés » (dont le pouvoir fermentescible est diminué) pouvant être stockés en centre d’enfouissement.

1.2. Les cinq objectifs du TMB

Les 5 objectifs possibles pour le TMB sont :
- Sur la fraction à haut PCI (pouvoir calorifique inférieur) du déchet :
 (1) Produire de l’énergie sous forme de CSR (combustible solide de récupération)
- Sur la fraction fermentescible du déchet :
 (2) Produire de l’énergie sous forme de biogaz
 (3) Fabriquer du compost
 (4) Réduire et stabiliser les déchets avant de les mettre en décharge
- Sur l’ensemble du déchet :
 (5) Recycler des matériaux (métaux, plastiques, papiers-cartons)

Un ou plusieurs objectifs sont retenus parmi les 5 précités : ils sont « à la carte », non exclusifs entre eux. Ils peuvent être concurrentiels entre eux (par exemple les papiers cartons peuvent être valorisés par recyclage, mais augmentent également la part fermentescible pour fabriquer du compost ou produire du biogaz, et ils peuvent également entrer dans la fabrication de CSR). Il y a donc un compromis à rechercher entre ces objectifs. A noter qu’un TMB ne peut pas fonctionner sans décharge (éventuellement sans incinérateur), pour pouvoir évacuer les déchets qu’il ne peut pas traiter (10 % du gisement de déchets) ou les refus qu’il génère (souvent 40 à 60 % du gisement).

Le potentiel maximal de valorisation organique des OMR a été estimé par l’ADEME (2007) à 52 %, soit environ 167 kg par an et par habitant :
- 36 % pour les biodéchets,
- 10,3 % pour les papiers,
- 5,7 % pour les cartons.

Mais les papiers-cartons propres doivent être orientés en priorité vers le recyclage matière.
1.3. Un développement récent

La filière TMB est en plein essor en France. Alors qu’en 2007 le nombre d’usines en fonctionnement était de 5 (hormis une vingtaine d’installations très anciennes et obsolètes), fin 2012 ce sont 60 unités (environ 40 créations et 20 projets de transformation de sites existants de compostage sur ordures ménagères) qui sont prévues pour traiter 4,5 Mt/an d’ordures ménagères résiduelles (OMR).

En 2011 le tonnage traité s’élève à 372 000 tonnes (étude des lieux AMORCE/ADEME, juin 2012). Les voies privilégiées sont soit la méthanisation avec apport au sol du digestat composté, soit la production directe de compost. Compte tenu de cet objectif spécifique de retour aux sols, le choix de recourir au TMB en France ne peut être comparé avec la situation rencontrée dans la plupart des pays européens. En effet en Europe du Nord la plupart des usines de TMB sont orientées vers la production de combustibles ou vers la stabilisation des matières, en complément de collectes sélectives des matériaux et déchets organiques.

Figure 1 : Répartition des installations de TMB – compostage en fonctionnement et en projet
(source : AMORCE/ADEME Etat des lieux Traitement mécano-biologique Compostage - DT 47 – page 87/100)
1.4. L’avis de l’ADEME (Mars 2012)

L’ADEME rappelle que la première priorité est la prévention de la production de déchets. Tout mode de traitement des déchets ménagers ne doit être envisagé qu’en complément d’actions ambitieuses sur la réduction des déchets à la source. Par ailleurs, la collecte selective efficace des matériaux, des déchets organiques et des déchets dangereux diffus reste le garant des performances des filières de recyclage et de la valorisation. Elle doit être étudiée en priorité.

Bien maîtrisé et intégré dans une gestion multi-filières des déchets donnant la priorité à la valorisation des matières extraites, le TMB constitue une contribution possible aux objectifs du Grenelle de l’Environnement à travers le processus de valorisation complémentaire des déchets ménagers et de réduction des quantités dirigées vers l’incinération ou vers l’enfouissement. Le TMB n’est qu’une étape de gestion de certains déchets ménagers à intégrer dans une gestion globale.

Le retour d’expériences des collectivités territoriales ayant recours au TMB reste toutefois trop faible pour soutenir, à ce stade, la généralisation de ce mode de traitement, dont le coût est significatif et très dépendant de la performance de valorisation et de la pérennité des débouchés.

L’ADEME invite les collectivités à une grande prudence lors du choix de cette filière et à n’y recourir qu’après examen comparatif avec les scénarios alternatifs envisageables. La réalisation d’une unité de TMB relève d’une décision locale qui doit prendre en compte :

- la présence d’exutoires pour les déchets que le TMB ne peut pas accepter ou les refus qu’il génère : incinérateurs ou cimenteries, centres de stockage de déchets non dangereux ;
- l’adaptation des produits du TMB aux débouchés : prise en compte des exigences en quantité et qualité des agriculteurs, maraîchers, réseaux de distribution d’énergie ou industriels utilisateurs de chaleur par exemple.

En cas de choix de ce procédé, il convient de veiller particulièrement à la qualité lors du montage des projets (sélection des meilleures techniques disponibles) et lors du suivi de l’exploitation des unités. Les déchets produits (fraction fermentescible, fraction combustible…) doivent être adaptés aux exigences des utilisateurs dans une démarche d’amélioration continue, garantissant transparence et traçabilité.

Pour ne pas provoquer un engouement excessif pour cette filière, l’ADEME ne prévoit pas d’apporter de subventions aux nouveaux projets de TMB à des fins de valorisation organique par compostage ou méthanisation, suivant d’ailleurs en cela une recommandation expresse du Comité Opérationnel qui avait été chargé de la mise en œuvre des décisions sur les déchets du Grenelle de l’Environnement. Cette position ne doit pas être comprise comme une condamnation de ce procédé, mais comme le signal de l’importance à attacher au montage des opérations afin d’en minimiser les risques.

1.5. Pour aller plus loin

Le traitement mécano-biologique des ordures ménagères - Les avis de l’ADEME - 4 pages - 2012

Sites :

AMORCE (Association nationale des collectivités, des associations et des entreprises pour la gestion des déchets, de l’énergie et des réseaux de chaleur)
ASTEE (Association scientifique et technique pour l’eau et l’environnement)
CNR (Cercle National du Recyclage)
FNADE (Fédération nationale des activités de la dépollution et de l’environnement)
FNCC (Fédération Nationale des Collectivités de Compostage)

2. Description des procédés

Sont traités ici des objectifs 2, 3 et 4 des TMB (produire de l’énergie sous forme de biogaz, du compost, ou stabiliser la matière organique avant mise en décharge), les deux autres objectifs (produire de l’énergie sous forme de CSR et recycler des matériaux) étant traités ailleurs dans le site de l’ADEME.
2.1. Un prérequis : des collectes sélectives

Un TMB ne peut pas se passer de collectes sélectives en amont pour écarter :
- Les « monstres » qui bloqueraient les équipements : palettes, bâches, etc.
- Les polluants chimiques, susceptibles de se diffuser dans la masse des déchets et incompatibles avec les objectifs (en particulier la production de compost conforme) : piles, huiles, déchets dangereux des ménages…
- Les indésirables inertes « physiques » lorsqu’ils ne sont pas dirigés vers le recyclage matière : morceaux de verre, plastiques, textiles…

Par exemple, pour s’assurer d’obtenir la meilleure qualité de compost possible, il est nécessaire de prévoir la mise en place :
- de collectes sélectives des déchets d'emballages et du verre,
- d’un réseau important de déchèteries ou une collecte de proximité pour les déchets dangereux.

La performance du TMB peut être compromise si le tri des déchets d'emballages n’est pas bien appliqué par les citoyens et s’ils n’ont pas facilement accès à une déchèterie. Ainsi dans les grosses agglomérations, la mise en place d’un TMB peut être délicate et doit être évitée s’il n’est pas possible de faire respecter les consignes de tri.

Si on sait écarter par divers procédés de tri avec une efficacité à relativiser des indésirables physiques, on ne sait pas retirer une pollution chimique qui aurait contaminé la masse des déchets.

2.2. La production de compost sur un site de TMB

Pour produire un compost valorisable en agriculture conforme à la norme NFU 44-051, les traitements mécaniques doivent assurer une élimination très poussée des éléments indésirables susceptibles de souiller les matières fertilisantes (plastiques, verre et métaux). Dans tous les cas et de façon très claire, les retours d’expérience démontrent que le broyage en tête est incompatible avec l’obtention d’un compost conforme à la norme, car les indésirables sont alors réduits, contaminant finement le substrat organique.

La chaîne de process pour produire un compost conforme à la norme NF U 44-051 à partir d’OMR sans étape de méthanisation comprend généralement un tube rotatif, un crible primaire, et enfin une unité d’affinage avant et/ou après maturation.

Afin d’assurer une maturation efficace, les constructeurs proposent des retournements à la chargeuse ou des dispositifs d’aération forcée ou non, en soufflerie ou en aspiration. L’utilisation de structurant grossier, en général des déchets verts ligneux, mélangé au compost, accroît la porosité du mélange et permet donc de mieux conduire la fermentation. En outre, ce structurant grossier pourra être utilement recyclé après le criblage intervenant après maturation. Il faut souligner que l’ajout de structurant ne doit s’envisager que sur du « pré-compost » qui doit de toute façon être conforme à la norme sans cet ajout, la dilution constituant une opération interdite.

2.2.1. Points forts

En comparaison avec un compost issu de biodéchets, le compost issu d’OMR après traitement mécano-biologique permet un captage plus important de matière organique que par la collecte sélective qui ne récupère en moyenne que le tiers des fermentescibles (40 kg/habitant/an), augmentant ainsi de manière significative le retour au sol des matières organiques.

2.2.2. Points faibles

Les exigences techniques pour se donner tous les moyens de produire un compost conforme à la norme NFU 44-051 sont très élevées, et elles le seront encore d’avantage, les critères de la norme étant appelés à se renforcer.
2.2.3. L’avis de l’ADEME

Le compostage des ordures ménagères résiduelles ne devrait être envisagé qu’après promotion des différents moyens suivants, lorsqu’ils sont pertinents et acceptables économiquement :
- Le recyclage « matière » des papiers-cartons, seuls ceux salis (mais non pollués) étant à diriger vers le compostage ;
- La gestion domestique pour les habitations disposant d’un jardin, ou si possible, la gestion interne aux entreprises ;
- L’apport en déchèterie des déchets verts, moyen de collecte plus économique qu’un ramassage au porte à porte ;
- La collecte sélective des biodéchets les plus faciles à mobiliser auprès des « gros producteurs » (restauration collective, industries agricoles et alimentaires, commerce et distribution, marchés de gros…) ;
- Une collecte sélective au porte à porte auprès des ménages dédiée essentiellement aux déchets de cuisine peut ensuite être étudiée sur les secteurs les plus favorables (de population relativement dense pour avoir suffisamment de déchets par point de collecte, de façon à maîtriser le coût de collecte) et non déjà couverts par le compostage domestique. Ces biodéchets collectés sélectivement peuvent être traités sur la plate-forme de compostage des déchets verts.

2.3. La méthanisation sur un site de TMB

La méthanisation est plus complexe, moins maîtrisée et plus coûteuse que le compostage. Le compromis est difficile à trouver entre production suffisante de biogaz et conformité réglementaire du compost. Si la valorisation du biogaz est maîtrisée, les performances des techniques actuelles d’affinage sur des digestats humides sont limitées et les risques d’insuffisance de qualité du compost apparaissent ici plus élevés. Les usines de TMB qui présentent des problèmes de fonctionnement sont d’ailleurs le plus souvent celles qui font de la méthanisation, en lien avec leur taille (plus importante que la moyenne pour pouvoir amortir les charges d’investissement qui sont plus élevées) et la complexité des procédés.

2.3.1. Humidification et homogénéisation

Il est admis que la teneur en matière sèche des OMR triées est en général supérieure à celle exigée par le régime de fonctionnement des procédés de méthanisation (voies sèches et humides). Une humidification est donc nécessaire avant introduction dans le digesteur, en général réalisée pour partie avec les effluents issus de la déshydratation du digestat.

2.3.2. Caractéristiques du biogaz de TMB

La composition et le rendement de production du biogaz sur une usine de méthanisation sont très variables en fonction des paramètres suivants :
- La nature et la qualité du substrat (ordures ménagères résiduelles, papier et cartons, boues de station d’épuration, déchets agro-alimentaires…) ;
- Le débit d’alimentation des digesteurs en matières organiques et le temps de séjour. En effet, la cinétique de production de biogaz est inversement proportionnelle à sa teneur en CH4, initialement assez faible (50 %), et plus élevée en fin de réaction (60 %).
- La qualité du brassage de la matière en digestion.
- Et enfin, les paramètres physiques de la réaction (température, pH, teneur en acides gras volatils…).
En fonction du mode de valorisation envisagé, la préparation du biogaz imposera divers traitements plus ou moins complexes et onéreux, comme la désulfuration, la déshydratation, et l’épuration… La composition du biogaz final dépend donc de cette préparation, et l’on retiendra que les objectifs de purification sont conditionnés par la nature des équipements de valorisation du biogaz (centrale de cogénération, chaudière, moteur, injection dans le réseau…).

2.3.3. Points forts

Le principal est la production d’énergie, mais qui reste inférieure à l’énergie produite par l’incinération des refus à haut PCI, d’autant plus que la nécessité de produire un digestat conforme à la NFU 44-051 impose un pré-compostage des matières fermentescibles avant leur introduction dans le digesteur, ce qui réduit d’autant leur pouvoir méthanogène et donc la production de biogaz.

2.3.4. Points faibles

Le coût est supérieur à celui d’une installation de compostage, et la maîtrise technique des procédés est loin d’atteindre celle des procédés de méthanisation des biodéchets issus de collectes sélectives.

2.3.5. L’avis de l’ADEME

La méthanisation, lorsqu’elle est appliquée à des ordures ménagères résiduelles, représente un surcoût d’investissement et d’exploitation conséquent alors que son potentiel énergétique est plus faible au regard de l’incinération des refus de TMB ou de la production de CSR. De plus, si la valorisation du biogaz est mieux maîtrisée, les performances des techniques actuelles d’affinage sont limitées sur des digestats humides s’il s’agit de les transformer en compost de qualité réglementaire. En effet on ne sait pas affiner le digestat, d’où la nécessité d’une épuration en amont des digesteurs. Les risques liés à la fermeture des débouchés pour de tels composts, valent avec davantage d’acuité pour la méthanisation, plus complexe et coûteuse.

2.3.6. Pour aller plus loin

Process type de compostage et de méthanisation d’ordures ménagères résiduelles

2.4. La stabilisation avant mise en décharge

L’objectif est de biodégrader, le « plus possible », la matière organique des déchets afin de réduire les émissions de gaz à effet de serre après enfouissement. Filière très minoritaire en France, la mise en décharge après stabilisation de la fraction organique des OMR peut être considérée dans certaines conditions économiques et environnementales, le traitement biologique visant alors à augmenter la durée de vie du centre de la décharge, et à en limiter les nuisances.

S’il n’existe pas en France de critères définissant la qualité du stabilisat, certains pays européens disposent de longue date de critères stricts pour l’enfouissement (comportement mécanique du déchet final, teneur en carbone organique ou en matières grasses, composition de l’éluat, stabilité de la matière organique, pouvoir calorifique résiduel). En Allemagne par exemple il est interdit d’enfouir des matières fermentescibles sans un traitement préalable.

Un process-type de stabilisation prévoit un compostage « poussé » de la fraction fermentescible des ordures ménagères (ou des déchets industriels banals) afin de la stabiliser et de la réduire le plus possible, pour permettre ensuite une mise en décharge d’une quantité diminuée de ces déchets générant alors moins de gaz à effet de serre.
Une recommandation en préalable : il faut retenir le process de TMB le plus simple et ne le complexifier qu'en fonction des possibilités locales de valorisation (recyclage de matériaux, valorisations de combustibles), ou des contraintes d’environnement, ou d’exutoire pour les déchets traités.

Le schéma du process peut en fait se résumer à quelques étapes simples, les autres équipements mentionnés étant optionnels :

Broyage >>> (Criblage grossier optionnel / mise en décharge directe des refus de criblage) >>> Fermentation de la fraction fine / brassages réguliers des andains à l’aide d’un chargeur ou mieux d’un retourneur pendant 3 mois >>> (Criblage secondaire optionnel) >>> Maturation de la fraction fine >>> Décharge. + Traitement des odeurs et des lixiviats.

Process simple ne signifie pas pour autant process bâclé. Le compostage en vue de la stabilisation des matières fermentescibles pour mise en décharge ne doit pas être considéré comme un « sous-compostage » ou un « séchage » des matières. Au contraire, le compostage doit être correctement effectué et plus long pour stabiliser au maximum les matières organiques à enfouir, et prévenir tout dégagement ultérieur de méthane.

2.4.1. L’avis de l’ADEME

Dans le cas d’un TMB pour stabilisation, donc en l’absence de production de compost ou de fabrication de CSR, il ne semble pas y avoir à l’heure actuelle de diminution sensible des quantités de matières organiques mises en décharge et la réduction de l’impact environnemental attendue de la stabilisation des déchets n’a pas été aujourd’hui établie.

De plus, la diminution de tonnage de déchets à mettre en décharge n’est générale quasiment pas suffisante pour compenser le surcoût du TMB, même dans le contexte actuel de hausse de la TGAP. Aussi, la pertinence technique et économique des TMB pour stabilisation se trouve-t-elle posée, d’autant que de nouvelles techniques de mise en décharge (landfill mining, bioréacteur …) pourraient s’avérer plus performantes et économiques.

2.4.2. Pour aller plus loin

Process type de TMB pour stabilisation des déchets avant mise en décharge

3. Cadre réglementaire

Les principaux textes sur le traitement et le retour au sol des déchets organiques sont rassemblés dans le document « rappels réglementaires ». Sont repris ici quelques-uns des textes spécifiques au TMB.

3.1. En Europe

Sous l’impulsion de la directive n°1999/31/CE du 26 avril 1999 concernant la mise en décharge des déchets, qui vise à réduire les quantités de déchets fermentescibles reçues par les installations de stockage, de nombreuses installations de TMB ont vu le jour en Europe. En effet, suite à cette directive de nombreux pays, comme l’Allemagne, l’Espagne ou l’Italie, ont mis en place des installations de TMB avec pour objectif la stabilisation avant enfouissement.

Dans la majorité des pays européens, le TMB est principalement mis en place pour répondre aux trois objectifs suivants : (1) produire de l’énergie sous forme de CSR, (2) produire de l’énergie sous forme de biogaz, et (3) réduire et stabiliser les déchets avant de les mettre en décharge.

L’objectif de fabriquer du compost est une particularité française, plusieurs législations nationales interdisant le retour au sol de compost issu d’OMR (Allemagne, Autriche, Pays-Bas, certaines régions d’Espagne, d’Italie,…).
3.2. En France

Le TMB étant un sigle recouvrant plusieurs modes de traitement, les réglementations françaises qui s’imposent aux installations de TMB sont celles qui traitent des déchets organiques, des installations de compostage, de méthanisation et de stabilisation, et de la mise en marché des produits.

3.2.1. Réglementation sur les déchets organiques

La loi n°2009-967 du 3 août 2009 de programmation relative à la mise en œuvre du Grenelle de l’environnement suit les lignes directrices de la directive 2008/98/CE et fixe un certain nombre d’objectifs pour la gestion des déchets dans son article 46. Il précise que « les quantités de déchets partant en incinération ou en stockage seront globalement réduites avec pour objectif, afin de préserver les ressources et de prévenir les pollutions, une diminution de 15 % d’ici à 2012 ». Cette volonté de diminution des quantités de déchets dédiées à ce type d’installations peut inciter au développement du TMB qui stabilise ou extrait vers le compost la matière organique et donc baisse la quantité de déchets restant à éliminer.

3.2.2. Réglementation sur les installations de compostage et de méthanisation

3.2.3. Réglementation sur la mise en marché de produits

La commercialisation des composts issus de TMB se fait dans le même cadre que pour les autres composts : l’homologation ou le respect de la norme Afnor NF U 44-051 relative aux amendements organiques (voir rappels réglementaires).

4. Quels sont les impacts

4.1. Au niveau des plates-formes

4.1.1. Risques de production d’un compost non conforme

La production d’un compost conforme aux exigences réglementaires à partir d’ordures ménagères résiduelles impose une performance renforcée des installations par rapport à une production de compost à partir de biodéchets collectés sélectivement. En effet, les ordures ménagères en mélange peuvent contenir des déchets toxiques et autres matériaux indésirables (verre, plastiques, métaux) qu’il convient d’écarter du compostage. Le TMB requiert donc les meilleures techniques de tri disponibles et des conditions d’exploitation rigoureuses.
Rappelons, par exemple, qu’une pile sur trois seulement est aujourd’hui collectée sélectivement et que plus de la moitié des déchets d’équipements électriques et électroniques (DEEE) finit dans les ordures résiduelles.

D’autre part, si les seuils réglementaires actuellement en cours de révision (ou ceux du projet de réglementation européenne sur les déchets), notamment ceux concernant les teneurs en éléments traces métalliques, devenaient plus sévères, il est possible que tout ou partie des composts issus de TMB ne puissent plus être utilisables en agriculture. Ceci remettrait en cause certaines unités existantes ou en projet.

4.1.2. Les odeurs

Les installations de TMB génèrent des flux d’air pollué qui doivent être épurés avant rejet à l’extérieur. Les débits à traiter dépendent des caractéristiques des procédés de production et en particulier des flux d’air issus du process, mais également du dimensionnement de la ventilation des locaux qui peuvent produire un ou plusieurs flux d’airs plus ou moins concentrés en polluants.

Les odeurs extraites par le système de ventilation sont traitées par différentes méthodes : laveur chimique (acido-basique, charbon actif), biofiltre, procédés thermiques. Si l’on évite que les odeurs partent à l’extérieur, elles restent alors cantonnées dans les bâtiments. Il est dans ce cas souhaitable d’automatiser certains process pour limiter l’exposition des travailleurs.

Pour pallier ce problème, 15 % de l’investissement d’un TMB doit être consacré à la maîtrise des odeurs. Plus les installations sont grosses, plus les problèmes d’odeurs sont difficiles à résoudre, notamment en raison d’une difficulté de conception des biofiltres pour traiter de très gros volumes d’air.

4.2. Au champ

Les impacts environnementaux des composts actuellement normés issus de TMB n’ont pas été évalués, ces types de composts étant éparples depuis trop peu de temps. Du point de vue agronomique, l’essai «Qualiagro», piloté par l’INRA de Grignon, montre l’intérêt du compost de TMB pour augmenter la teneur en matière organique en grandes cultures, mais également la stabilité structurale [de façon plus importante que d’autres composts (de déchets verts + boues ou de fumiers de bovins)], sans doute en raison d’une teneur en cellulose plus importante due aux papiers présents dans les OMR et à une période de maturation plus faible du compost de TMB.

Rappelons la nécessaire vigilance à avoir sur les critères d’innocuité (teneurs en ETM, CTO) des composts issus de TMB, au-delà même de la réglementation en cours (évolution possible de celle-ci vers des seuils plus bas).

5. Quels sont les coûts

5.1. Une pertinence économique délicate à trouver

Les coûts d’investissement et d’exploitation dans les installations de TMB diffèrent selon les tonnages de déchets entrants et les techniques utilisées. L’évaluation des coûts demeure difficile dans la mesure où il n’existe pas de données générales sur les montants mis en jeu par les TMB en France et que les installations existantes à l’heure actuelle sont très différentes les unes des autres.

Une analyse de la situation dans 4 pays européens confiée par la FNADE et l’ADEME à BIPE Conseil révèle des coûts moyens variant de 80 à 125 € TTC/t de déchets, avec une moyenne de 90 €/t, soit des coûts proches de ceux de l’incinération (de 90 à 135 € TTC/t de déchets pour les mêmes pays). Les coûts d’une filière de traitement ne peuvent en effet s’apprécier que par rapport à ceux d’une filière alternative et en considérant également les services rendus et les impacts.
L'intérêt économique des projets de TMB dépend fortement de l'existence de débouchés, stables et de long terme, pour les produits et l'énergie obtenus. Le prix de vente des composts, qui reste faible et dépendant du contexte local, n'est pas un enjeu d'importance.

Par contre, il existe un risque de production d'un compost non conforme, ce qui induirait alors des coûts supplémentaires élevés pour le stockage et l'élimination des matières qui ne peuvent être valorisées. Enfin, le traitement éventuel de la fraction à fort PCI génère des coûts (coût de reprise par les cimentiers ou de traitement en UIOM) dont la pertinence doit aussi être vérifiée.

5.2. Des coûts différents selon les objectifs du TMB

Les coûts d'investissement et de fonctionnement sont relativement élevés pour le compostage et encore plus pour la méthanisation. Il faut donc s'assurer, au regard des services supplémentaires rendus, de la pertinence économique du projet par rapport aux autres filières de traitement ou stockage envisageables. Il semble préférable que le coût de gestion globale ne dépasse pas 200 € HT/tonne.

D'après l'état des lieux AMORCE/ADEME de juin 2012, le coût d'investissement reporté sur la capacité d'installation est moins élevé pour les installations en fonctionnement (296 € HT/tonne en moyenne) que pour les installations en projet (435 € HT/tonne en moyenne). Cette différence pourrait peut-être s'expliquer par l'introduction de l'obligation d'un traitement des odeurs (ajout d'équipements : laveurs, biofiltre), par l'augmentation du coût des équipements et matériaux de construction.

A la suite des difficultés de construction ou d'exploitation rencontrées par les installations en fonctionnement, lesquelles ont dû investir par la suite pour résoudre ces difficultés, les budgets des projets intègrent aujourd'hui plus d'aléas que précédemment. Cependant, la variabilité des coûts est très importante : de 172 à 573 € HT/tonne pour les projets.

On observe une situation inverse pour le prix payé par la collectivité (fonctionnement de l'installation), c'est à dire que ce prix moyen pour les installations en fonctionnement (102,3 € HT/tonne) est presque deux fois plus élevé que celui prévu pour les installations en projet (50,5 € HT/tonne). Ainsi, le prix prévisionnel ne semble pas représentatif du prix réel qui sera payé par la collectivité.

5.3. Pour aller plus loin

- Installations de traitement mécano-biologique avec compostage des déchets ménagers en France, Etat des lieux - juin 2012 - PDF
- Méthanisation des déchets ménagers, Etat des lieux 2012 – PDF
- Réflexions et pistes sur le traitement mécano-biologique, Cercle National du Recyclage (CNR)

6. Des exemples

6.1. L’usine de Launay Lantic

Installée à quelques km de St Brieuc, l’usine, créée en 1979, est gérée par le SMITOM qui rassemble 34 communes totalisant 38 000 habitants (exploitation Geval, filiale d’Onyx). Le syndicat dispose sur le même site de compostage d’un centre d’enfouissement de classe 2 avec un volume disponible de 270 000 m3 pour un flux de 11 000 t/an de déchets enfouis.

La capacité administrative de traitement de l’usine est de 17 000 t/an pour les ordures ménagères résiduelles (OMR) et les déchets d’industries agroalimentaires (DIAA) et de 9 500 t/an pour les déchets verts (DV). En 2011, 11 258 t d’OMR ont été traitées, 2 772 t de DIAA et 6 722 t de DV (AMORCE, Etat des lieux 2012). Une tonne d’ordures ménagères entrante donne 350 kg de compost mûr, 150 kg de pertes de fermentation, 20 kg de ferrailles valorisées et 480 kg de refus enfouis en attendant une solution de valorisation.
6.1.1. Les tubes de fermentation

La capacité des deux fosses de réception réunies est de 550 m³ permettant d'accueillir 160 t de déchets. Les tubes (longueur : 24 m, diamètre : 3,15 m) peuvent traiter jusqu'à 60 t d'ordures ménagères et de biodéchets industriels par jour. Les ordures ménagères séjournent en moyenne 3,5 jours dans les tubes de fermentation. La décomposition des déchets est accélérée par brassage, arrosage et ventilation.

6.1.2. La tour d'affinage

Dans la tour d'affinage, les ordures ménagères traversent trois étapes de tri mécanique qui permettent d'épurer la fraction fermentescible. Trois fractions sont ainsi formées : la matière organique à valoriser en compost, les métaux ferreux qui seront recyclés et les refus qui seront enfouis.

6.1.3. Le compostage

Un hall couvert permet de maîtriser l'humidité du compost et de guider sa fermentation à l'abri des intempéries. Pour améliorer la fermentation, la fraction fermentescible des ordures ménagères en provenance de la tour d'affinage sont co-compostées dans les proportions suivantes : 60 % de « compost frais » sorti de la tour d'affinage, 25 % de déchets verts, 15 % de biodéchets (algues). Les andains séjournent 6 semaines sous le hall et sont retournés 2 fois par semaine. L'activité bactérienne fait grimper la température jusqu'à 65 °C. Des relevés de températures sont effectués toutes les semaines afin de vérifier le bon déroulement de la fermentation. Au bout des 6 semaines, le compost est stocké à l'extérieur pour la phase de maturation, qui dure au minimum 3 mois.

6.1.4. La commercialisation

Le compost est principalement vendu aux légumiers du CERAFEL (Comité régional des producteurs de fruits et légumes) qui ont établi une charte qualité. Avant de quitter l’usine chaque lot de compost est analysé. Les tarifs de vente sont de 15 €/t de 0 à 10 t, 3,81 €/t de 10 à 100 t, et 2,28 € au-delà de 100 t.

6.1.5. Pour aller plus loin

[Site de l’usine de Launa-Lantic]

7. Questions réponses

7.1. Sur la technique

Une installation de TMB est-elle une alternative à la création d’un incinérateur ou d’un centre d’enfouissement ?

Non, une installation de TMB ne peut être conçue qu’en amont. Elle n’est pas une alternative à l’utilisation d’un incinérateur ou d’un centre d’enfouissement, lesquels sont indispensables pour recevoir les refus du TMB et les déchets qu’il ne peut pas traiter.

Quels sont les objectifs du TMB ?

On peut en distinguer 5 : (1) produire de l’énergie sous forme de combustible de récupération (CSR), (2) produire de l’énergie sous forme de biogaz, (3) fabriquer du compost, (4) réduire et stabiliser les déchets avant de les mettre en décharge, (5) recycler des matériaux (métaux, plastiques, papiers-cartons).

Combien existe-t-il d’usines de TMB en France ?

Le développement des TMB est récent en France. On comptait 5 installations en fonctionnement en 2007, mais fin 2012 ce sont au total près de 60 projets qui sont en cours.
Et en Europe ?
Environ 330 usines de TMB fonctionnent en Europe, mais dans beaucoup de pays, l'objectif principal du TMB est la stabilisation des déchets organiques avant leur mise en décharge, la production de biogaz ou de CSR.

7.2. Sur la réglementation
Existe-t-il une norme spécifique pour les composts issus de TMB ?
Non, les composts issus de TMB doivent être homologués ou respecter la norme Afnor NF U 44-051 commune aux amendements organiques.

Existe-t-il une réglementation spécifique pour la stabilisation des déchets organiques avant mise en décharge ?
Non, pas en France. Il en existe dans d'autres pays, comme par exemple en Allemagne. C'est d'ailleurs cette réglementation spécifique qui a conduit au développement du TMB dans ce pays, afin de transformer les ordures ménagères pour qu'elles puissent être admises en décharge.

7.3. Sur les coûts
Quel est le coût de fonctionnement d'une installation de TMB ?
La réponse est partielle car étant donné le faible nombre d'usines actuellement en fonctionnement et leur variété, il est difficile de proposer des moyennes fiables. Les fourchettes peuvent aller de 80 à 130 € HT/tonne traitée pour les unités de TMB dont l’activité principale est le compostage, de 110 à 160 € HT/tonne traitée pour les unités de TMB faisant de la méthanisation, et de 70 à 80 € HT/tonne traitée pour les unités réalisant seulement de la stabilisation en vue de la mise en décharge (source : Réflexions et pistes sur le traitement mécano-biologique, Cercle National du Recyclage).

8. Perspectives

8.1. Evolutions réglementaires
Afin d’apporter une certaine pérennité à l’installation, la conception, la construction et l’exploitation d’un TMB doivent impérativement prendre en compte la perspective d’un renforcement des exigences de qualité du compost. En effet, ces dernières devraient évoluer, tant à la demande des utilisateurs qu’au niveau de la réglementation européenne, dans le sens d’une plus grande sévérité.
Le TMB exige ainsi un engagement ferme de la collectivité sur la qualité des composts produits et sur la mise en œuvre d’un dialogue régulier avec les utilisateurs visant l’adaptation à leurs besoins. Si le compost n’atteint pas la qualité indispensable pour pouvoir être utilisé en tant qu’amendement organique, l’ensemble du fonctionnement de l’installation de TMB est remis en cause.

8.2. L’avis de l’ADEME
Si le compost produit venait à être non conforme, par suite d’un process insuffisant ou d’une sévère sur le traitement avant mise en décharge. Certes, les équipements d’affinage du compost pourraient être recyclés vers une plateforme de compostage de biodéchets, mais certains autres affectés à la préparation ou au tri des déchets seraient surdimensionnés ou inutiles pour une simple stabilisation des déchets. Le coût de la gestion du déchet risquerait alors d’augmenter sensiblement : le compost non conforme devrait être conduit en décharge avec les refus du traitement, en subissant le coût du traitement par compostage, plus celui de l’admission en décharge.
Les nouveaux procédés doivent donc être conçus pour pouvoir être évolutifs, en particulier au niveau de la chaîne d’affinage (en prévoyant par exemple la possibilité de rajouter un nouveau système de tri). Il n’est cependant pas certain que les futures techniques puissent garantir un jour un niveau de qualité suffisant pour répondre aux évolutions réglementaires.

Enfin le TMB a tout intérêt à mettre en œuvre un système « Qualité » basé sur un comité de concertation locale réunissant 1 ou 2 fois par an les partenaires et utilisateurs, dans le but de prendre les mesures correctives nécessaires lorsque celles-ci s’imposent.

8.3. Nécessité d’un retour d’expériences

Les unités de TMB sont récentes. Des études et retours d’expériences sont nécessaires afin de pouvoir apprécier les performances des usines mises récemment en service.

L’ADEME est ainsi disponible pour soutenir d’une part, les études visant à créer un contexte aussi favorable que possible à la réussite des opérations (mise en place de collecte des déchets dangereux, études des besoins en amendements organiques…), et d’autre part, les travaux de recherche ou développement de process de tri permettant de faire évoluer cette technique, notamment :

- L’évaluation et le suivi technique et financier du fonctionnement de TMB exemplaires, afin de définir les conditions minimales de réussite (cahier des charges, engagement d’exploitation).
- L’accompagnement de campagnes de mesures de la qualité des composts produits (pour les différentes unités de compostage ou méthanisation, avec ou sans TMB).
- L’accompagnement de travaux de R&D sur les bilans environnementaux de différents scénarios de gestion de déchets ; le développement des technologies de tri ; la caractérisation des différentes fractions, notamment combustibles ou fermentescibles, ou déchets stabilisés.

L’ADEME a lancé fin 2011 une expertise de 10 installations de gestion biologique des déchets ménagers et assimilés (dont 5 de TMB). L’objet de cette expertise est d’évaluer les résultats techniques et économiques de ces installations, et autant que possible d’en dégager des enseignements pour les améliorer et également permettre une capitalisation au bénéfice des projets d’installations à venir. Les résultats définitifs seront disponibles mi 2014.

Lexique

<table>
<thead>
<tr>
<th>ADEME</th>
<th>Agence de l'Environnement et de la Maîtrise de l'Energie</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMB</td>
<td>Traitement mécano biologique</td>
</tr>
<tr>
<td>CSR</td>
<td>Combustible Solide de Récupération</td>
</tr>
<tr>
<td>PCI</td>
<td>Pouvoir Calorifique inférieur</td>
</tr>
<tr>
<td>ETM</td>
<td>Eléments traces métalliques</td>
</tr>
<tr>
<td>CTO</td>
<td>Carbone organique total</td>
</tr>
</tbody>
</table>
L’ADEME EN BREF

L’ADEME est un établissement public sous la tutelle conjointe du ministère de l’Écologie, du Développement durable et de l’Énergie et du ministère de l’Enseignement supérieur et de la Recherche.